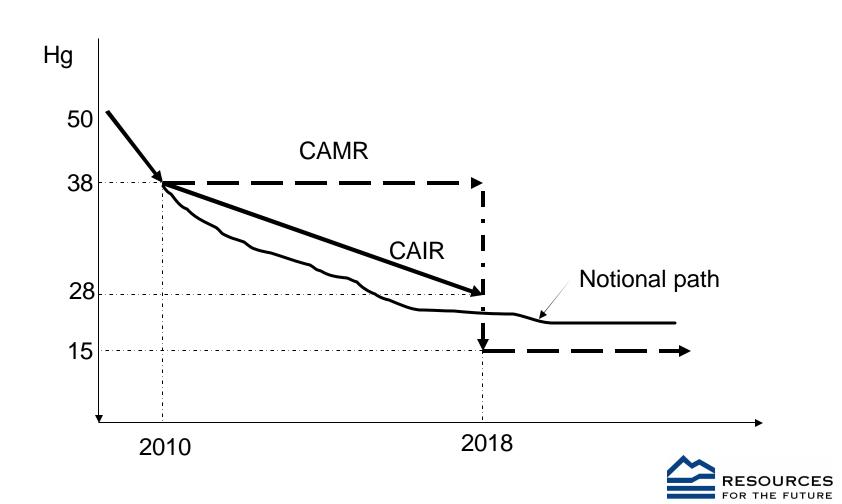
Economic and Health Issues

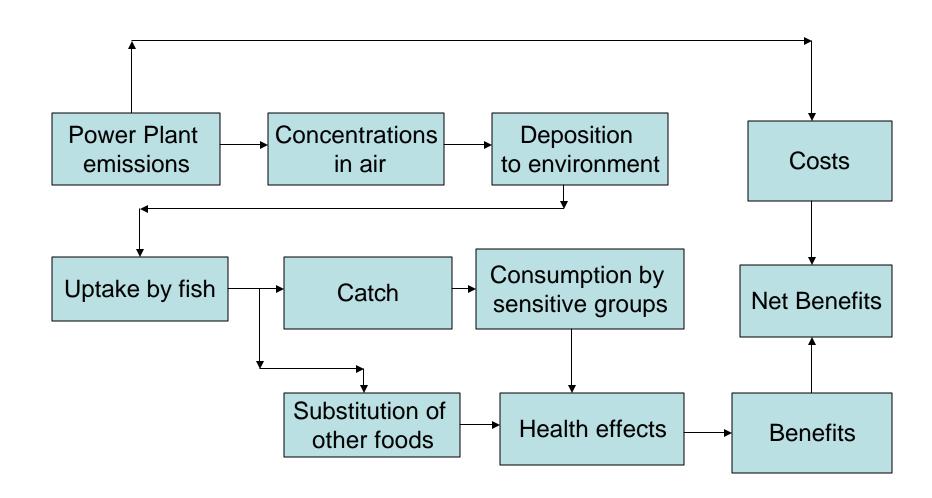
Alan Krupnick, PhD Senior Fellow, Resources for the Future

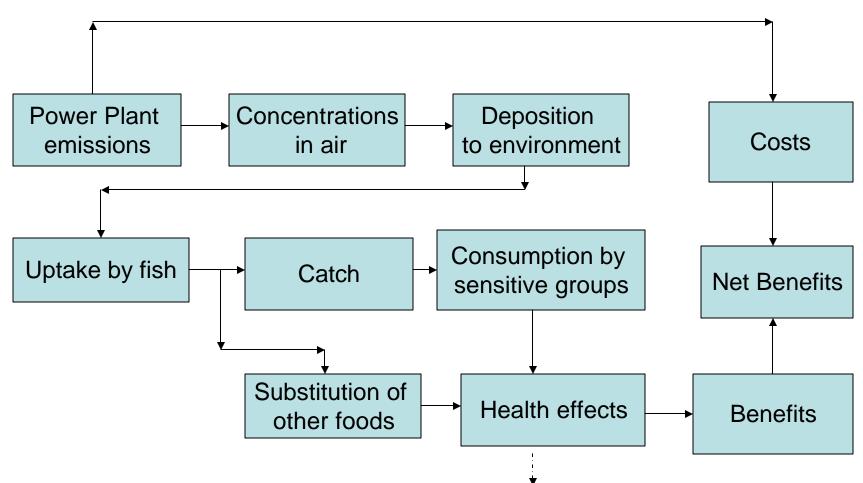
Virginia Mercury Symposium Omni Newport News Hotel Newport News, VA November 28-29, 2007



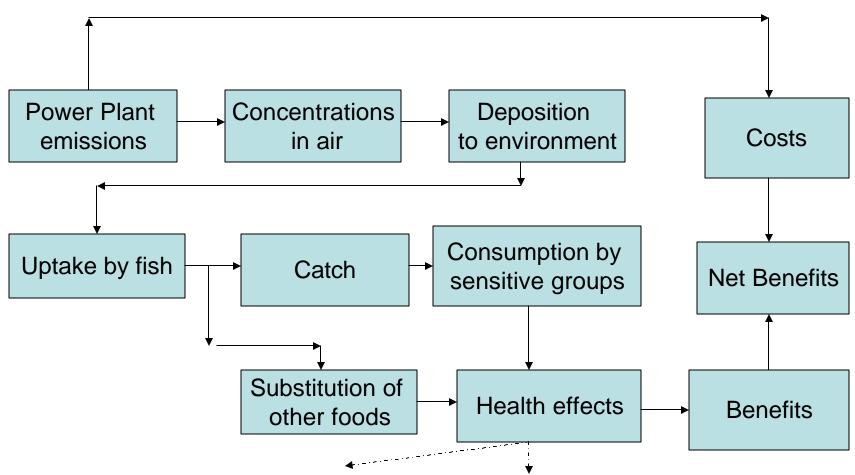
State of Play

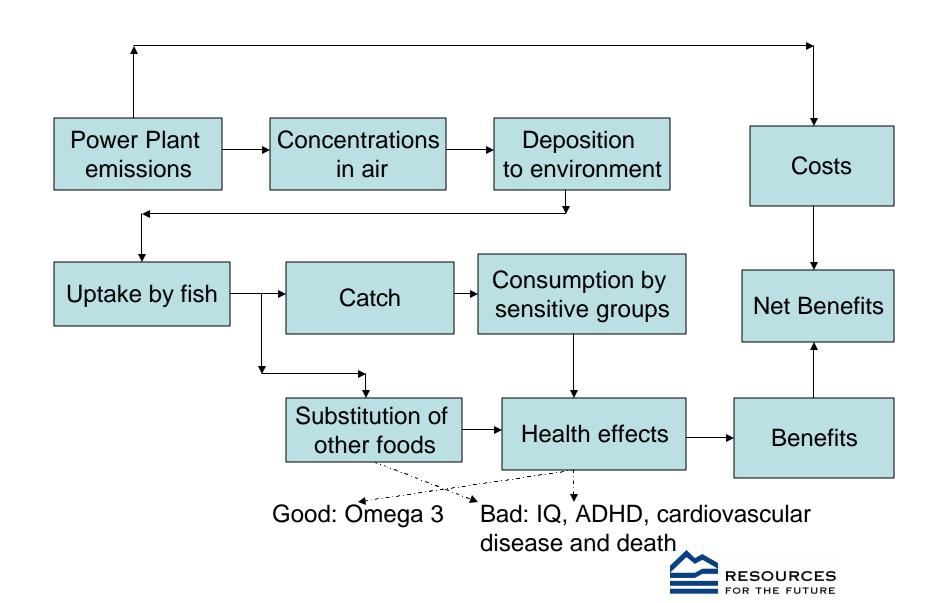
- CAIR
- CAMR
 - Trading vs. cap
 - 12/06: 23 states adopted tighter Hg cap than EPA; 13 not trading:
- Virginia
 - Large companies have restrictions on trading (purchases)
 - Largest meets cap by 2015 instead of 2018

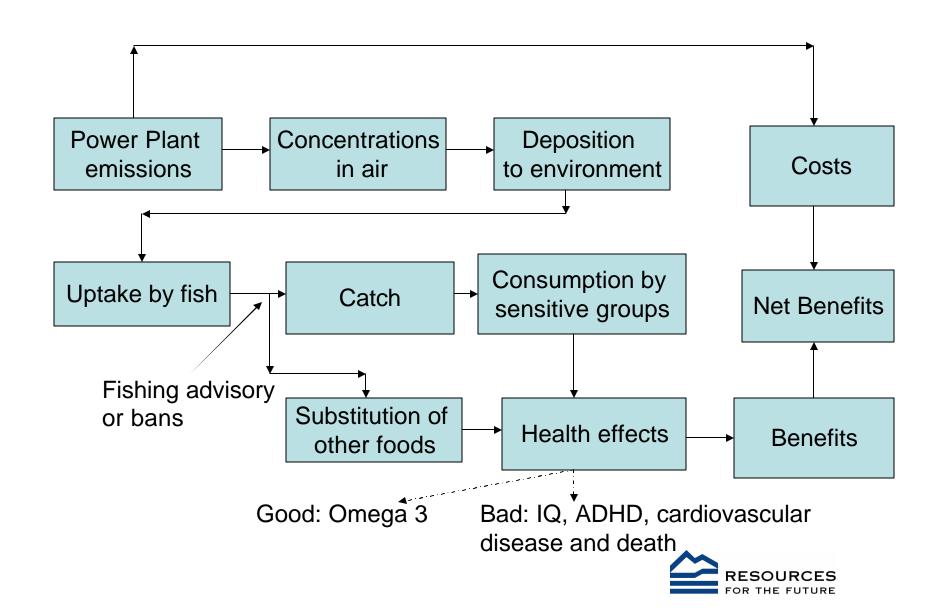

CAIR vs. CAMR


Hg Regulation Cost-Benefit Analyses

- Virginia to do (2006 House Bill 1055)
- EPA's RIA (2005)
- Gayer and Hahn (2006)
- Jakus, McGuinness, and Krupnick (2002) (CBA of a recreational fish advisory on bass in the Chesapeake bay)
- Palmer, Burtraw and Shih (2005)
- Rice and Hammitt (2005)
- Trasande, Landrigan, and Schechter (2005) and Griffiths, McGartland and Miller (2007)

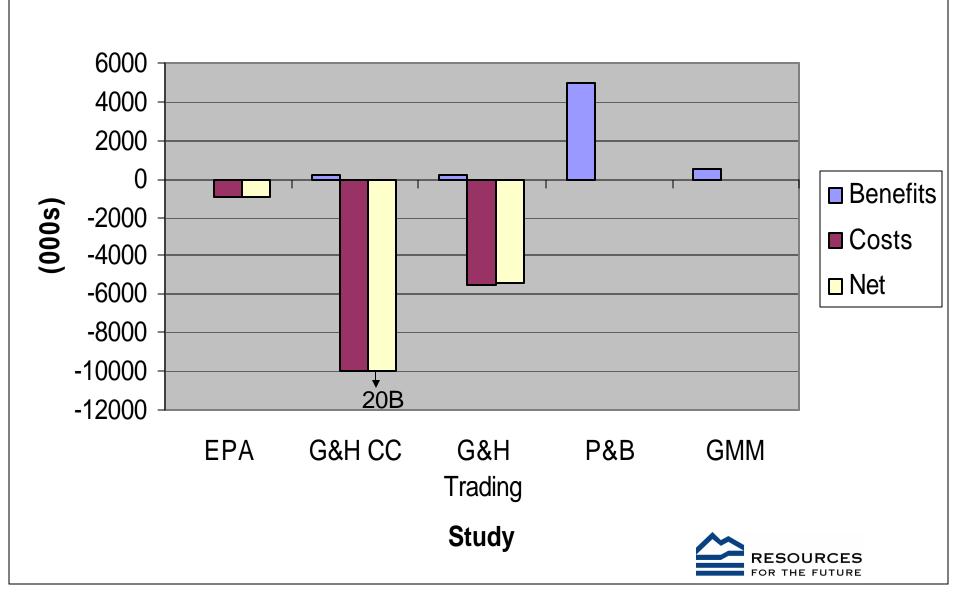





Bad: IQ, ADHD, cardiovascular

disease and death

Good: Omega 3 Bad: IQ, ADHD, cardiovascular disease and death



BCA Results

- EPA's RIA
 - CAIR: Almost all benefits are from fine PM reductions; lots of Hg reductions
 - CAMR: (benefits for IQ only)
 - With MACT on top of CAIR
 - With cap and trading with banking of Hg on top of CAIR
- Gayer and Hahn
 - benefits for IQ only
 - With MACT on top of CAIR
 - With cap and trading with banking of Hg on top of CAIR
- Griffiths, McGartland and Miller
 - benefits for IQ only
 - Benefit of CAMR
- Palmer, Burtraw and Shih
 - Benefits of CAMR (IQ plus cardiovascular mortality)

BCA for CAMR beyond CARE (2004\$)

Health Effects History

- Interest in Hg began after Minimata incident in 50's (deaths, blindness and neurological damage from eating fish)
- Early 1970s, deaths and hospitalization from eating grain products treated with fungicide containing methyl mercury
- 1995: FDA issues advisory to limit consumption of shark and swordfish to <= one serving per week; pregnant women: <= 1/mo.
- 2001: FDA withdraws general advisory and tightens it for pregnant women
- FDA and EPA issue new advisory expanding to breast feeding women, children and women who were trying to become pregnant: <= 12 oz fish and seafood; 6 oz. Albacore tuna/wk
- Do advisories work? Harvard study: After 2001, fish consumption among 2,000 pregnant women dropped by ½ serving from 2 per week. RFF study: lots of slippage from advisory to reduced health effects.

More History

- UK Study in Lancet: Child IQ, test score, ADHD effects from women eating < 12 oz fish /week during pregnancy
- Seychelles 20 yr longitudinal study: No adverse effects
- Faroe Islands study: Slight neurological effects to children of mothers who ate whales (high Hg and high selenium.
- Finland study: men with highest hair Hg had a 2.0-fold increased risk of acute myocardial infarction relative to the other groups.
- Virtanen et al. (2005) follow-up (13 years) finds high mercury content in hair increased the risk of cardiovascular morbidity and mortality and attenuated the beneficial effects of fish oils on cardiovascular health.

What's good about fish

- Fish is rich in protein, generally low in calories and packed with omega-3 fatty acids, and generally lower in contaminants than some other high protein foods.
- The <u>National Academy of Sciences</u>, the <u>American Heart Association</u> and the 2005 U.S. Dietary Guidelines (as well as EPA and FDA) advise eating about two meals of fish per week
- Omega-3s are essential fats key to fetal brain development and improve mood (including postpartum depression. May decrease the risk of having a preterm baby.
- →Eat fish that is low in mercury, particularly when pregnant (salmon, sardines, tilapia, anchovies, shrimp and light tuna. Can take fish oil supplements to get benefits.

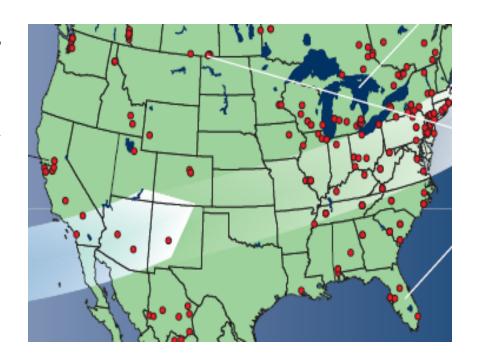
Omega-3	Mercury	Cost per serving:
Highest ■■■	Highest	\$ = About \$1 or less
Higher ■ ■ ■	High	\$\$ = About \$1 to \$3
High =	Lower	\$\$\$= About \$3 to \$6
Moderate	Lowest	\$\$\$\$ = About \$6 and higher

FISH/SEAFOOD	OMEGA-3	MERCURY	COST
Shrimp Baked, boiled, steamed, canned	•	_	\$\$\$
Shrimp Breaded and fried	-	-	\$\$\$
Tuna Light canned	•••	••	\$
Tuna White canned (albacore)	••••	•••	\$
Tuna Fresh grilled bluefin			\$\$\$
Tuna Fresh grilled yellowfin	•	•••	\$\$\$
Salmon Canned	****	_	\$
Salmon Farm-raised		•	\$\$
Salmon Wild	****	•	\$\$-\$\$\$
Catfish			\$\$
Tilapia		•	\$\$
Crab Blue		•	\$\$-\$\$\$
Crab Alaska king	•	•	\$\$-\$\$\$\$
Cod			\$\$
Clams		_	\$

Swordfish: | | | | | | | | \$\$\$-\$\$\$\$

Valuation studies of Health Effects

• IQ point:


- Lifetime earnings: EPA: \$8,807 per IQ lost (\$1999);
 TLS and GMM: \$7,121 per boy and \$5,268 per girl (2000\$);
- WTP: G&H: low-end \$1,295 and high-end \$2,236(2004\$) per IQ lost
- WTP: \$10,420 (2000\$) per IQ lost from Rowe et al. (1995)
- Cost of illness: R&H:\$16,500 per IQ lost (2000\$)

Mortality:

- Value of Statistical Life: BPS: \$2.2;\$5.8 million;
 R&H:\$6 million, JMK: \$700K; \$6 million
- Cost of illness: R&H: \$50,000 per myocardia infanction

Hotspots

- 244 mercury hot spots in North America, where the amount of mercury contamination exceeds naturally occurring
- EPRI believes that the hot spots won't be intensified under the CAMR trading program
- Note that Hg will be coming down overall
- Hotspots should be measured from old not new baseline
- Environmental justice concerns should be treated the same way.
- If there's a problem use local authority to address.

Allowance allocation

- Emission budget for each state: share of cap
- EPA Guidance: Free allowances updated based on heat input adjusted according to fuel type.
- States can do what they want

Auction

- Advantage: cost-effective; flexible to policy maker; able to generate revenue; doesn't favor incumbent firms
- Disadvantage: higher electricity price in regulated (cost of service) regions
- Possible use of revenues:
 - Compensation to consumers; investment in technology improvement; support to other environmental friendly programs; etc
 - However, improving energy efficiency would draw down the allowance price due to the decrease in demand.

Conclusions

- → Estimated costs for CAMR far exceed estimated benefits
 - → Remember not to count ancillary particulates reductions unless they exceed mandated levels and with no trading on SO2 and NOX. With trading, price falls, but no health benefits.
 - → Results very sensitive to Hg-mortality link;
- → Join the trading program
- → Regulate PM more; not as ancillary to Hg
- → Don't worry too much about hotspots
- → Consider auctions

